123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- #include "fe25519.h"
- #include "ge25519.h"
- /* d */
- static const fe25519 ecd = {{929955233495203, 466365720129213, 1662059464998953, 2033849074728123, 1442794654840575}};
- /* sqrt(-1) */
- static const fe25519 sqrtm1 = {{1718705420411056, 234908883556509, 2233514472574048, 2117202627021982, 765476049583133}};
- /* return 0 on success, -1 otherwise */
- int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
- {
- fe25519 t, chk, num, den, den2, den4, den6;
- unsigned char par = p[31] >> 7;
- fe25519_setint(&r->z,1);
- fe25519_unpack(&r->y, p);
- fe25519_square(&num, &r->y); /* x = y^2 */
- fe25519_mul(&den, &num, &ecd); /* den = dy^2 */
- fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
- fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
- /* Computation of sqrt(num/den)
- 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8)
- */
- fe25519_square(&den2, &den);
- fe25519_square(&den4, &den2);
- fe25519_mul(&den6, &den4, &den2);
- fe25519_mul(&t, &den6, &num);
- fe25519_mul(&t, &t, &den);
- fe25519_pow2523(&t, &t);
- /* 2. computation of r->x = t * num * den^3
- */
- fe25519_mul(&t, &t, &num);
- fe25519_mul(&t, &t, &den);
- fe25519_mul(&t, &t, &den);
- fe25519_mul(&r->x, &t, &den);
- /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not:
- */
- fe25519_square(&chk, &r->x);
- fe25519_mul(&chk, &chk, &den);
- if (!fe25519_iseq_vartime(&chk, &num))
- fe25519_mul(&r->x, &r->x, &sqrtm1);
- /* 4. Now we have one of the two square roots, except if input was not a square
- */
- fe25519_square(&chk, &r->x);
- fe25519_mul(&chk, &chk, &den);
- if (!fe25519_iseq_vartime(&chk, &num))
- return -1;
- /* 5. Choose the desired square root according to parity:
- */
- if(fe25519_getparity(&r->x) != (1-par))
- fe25519_neg(&r->x, &r->x);
- fe25519_mul(&r->t, &r->x, &r->y);
- return 0;
- }
|